How to find a euler circuit

Video to accompany the open textbook Math in Society (http://www.opentextbookstore.com/mathinsociety/). Part of the Washington Open Course Library Math&107 c...

How to find a euler circuit. Together we will learn how to find Euler and Hamilton paths and circuits, use Fleury’s algorithm for identifying Eulerian circuits, and employ the shortest path algorithm to solve the famous Traveling …

From this construction, we see that the in-degree and the out-degree of each vertex is the same and it equals 2. Hence, the resulting digraph is an Eulerian digraph. The required sequence can be obtained from this Eulerian circuit by taking the first bit of the label on the edge. The circular arrangement can be achieved by joining two ends of the

Eulerian Circuit is an Eulerian Path which starts and ends on the same vertex. A graph is said to be eulerian if it has a eulerian cycle. We have discussed eulerian circuit for an undirected graph. In this post, the same is discussed for a directed graph. For example, the following graph has eulerian cycle as {1, 0, 3, 4, 0, 2, 1}Steps to Find an Euler Circuit in an Eulerian Graph Step 1 - Find a circuit beginning and ending at any point on the graph. If the circuit crosses every edges of the graph, the circuit you found is an Euler circuit.15. The maintenance staff at an amusement park need to patrol the major walkways, shown in the graph below, collecting litter. Find an efficient patrol route by finding an Euler circuit. If necessary, eulerize the graph in an efficient way. 16. After a storm, the city crew inspects for trees or brush blocking the road.Figure 6.5.3. 1: Euler Path Example. One Euler path for the above graph is F, A, B, C, F, E, C, D, E as shown below. Figure 6.5.3. 2: Euler Path. This Euler path travels every edge once and only once and starts and ends at different vertices. This graph cannot have an Euler circuit since no Euler path can start and end at the same vertex ...25 พ.ค. 2566 ... ... check in linear-time if a graph is. Eulerian (i.e., it has an Eulerian circuit), but we can also find an Eulerian circuit in linear time:.Example Problem. Solution Steps: 1.) Given: y ′ = t + y and y ( 1) = 2 Use Euler's Method with 3 equal steps ( n) to approximate y ( 4). 2.) The general formula for Euler's Method is given as: y i + 1 = y i + f ( t i, y i) Δ t Where y i + 1 is the approximated y value at the newest iteration, y i is the approximated y value at the previous ...An Euler path, in a graph or multigraph, is a walk through the graph which uses every edge exactly once. An Euler circuit is an Euler path which starts and stops at the same vertex. Our goal is to find a quick way to check whether a graph (or multigraph) has an Euler path or circuit.

Voltage, resistance and current are the three components that must be present for a circuit to exist. A circuit will not be able to function without these three components. Voltage is the main electrical source that is present in a circuit.HOW TO FIND AN EULER CIRCUIT. TERRY A. LORING The book gives a proof that if a graph is connected, and if every vertex has even degree, then there is an Euler circuit in the graph. Buried in that proof is a description of an algorithm for nding such a circuit. First, pick a vertex to the the \start vertex."Steps to Find an Euler Circuit in an Eulerian Graph Step 1 - Find a circuit beginning and ending at any point on the graph. If the circuit crosses every edges of the graph, the circuit you found is an Euler circuit.Stanford’s success in spinning out startup founders is a well-known adage in Silicon Valley, with alumni founding companies like Google, Cisco, LinkedIn, YouTube, Snapchat, Instagram and, yes, even TechCrunch. And venture capitalists routin...Mathematical Models of Euler's Circuits & Euler's Paths 6:54 Euler's Theorems: Circuit, Path & Sum of Degrees 4:44 Fleury's Algorithm for Finding an Euler Circuit 5:201 Answer. The algorithm you linked is (or is closely related to) Hierholzer's algorithm. While Fleury's algorithm stops to make sure no one is left out of the path (the "making decisions" part that you mentioned), Hierholzer's algorithm zooms around collecting edges until it runs out of options, then goes back and adds missing cycles back into ...Consider the following example graph: If the DFS traversal starts with a -> b -> c -> a, it would then become stuck at a. Therefore, the DFS traversal has to backtrack to the last vertex which has an untraversed edge. This would be vertex b. The DFS traversal can then continue with b -> d -> e -> b.

Finding Euler Circuits Be sure that every vertex in the network has even degree. Begin the Euler circuit at any vertex in the network. As you choose edges, never use an edge that is the only connection to a part of the network that you have not already... Label the edges in the order that you travel ...Steps to Find an Euler Circuit in an Eulerian Graph. Step 1 - Find a circuit beginning and ending at any point on the graph. If the circuit crosses every edges of the graph, the circuit you found is an Euler circuit. If not, move on to step 2. Step 2 - Beginning at a vertex on a circuit you already found, find a circuit that only includes edges ... Theorem 13.1.1 13.1. 1. A connected graph (or multigraph, with or without loops) has an Euler tour if and only if every vertex in the graph has even valency. Proof. Example 13.1.2 13.1. 2. Use the algorithm described in the proof of the previous result, to find an Euler tour in the following graph. Using the graph shown above in Figure 6.4. 4, find the shortest route if the weights on the graph represent distance in miles. Recall the way to find out how many Hamilton circuits this complete graph has. The complete graph above has four vertices, so the number of Hamilton circuits is: (N – 1)! = (4 – 1)! = 3! = 3*2*1 = 6 Hamilton circuits.

Kansas major rivers.

Jan 14, 2020 · An euler path exists if a graph has exactly two vertices with odd degree.These are in fact the end points of the euler path. So you can find a vertex with odd degree and start traversing the graph with DFS:As you move along have an visited array for edges.Don't traverse an edge twice. While it usually is possible to find an Euler circuit just by pulling out your pencil and trying to find one, the more formal method is Fleury’s algorithm. Fleury’s Algorithm. 1. Start at any vertex if finding an Euler circuit. If finding an Euler path, start at one of the two vertices with odd degree. 2. Choose any edge leaving your ...Euler path = BCDBAD. Example 2: In the following image, we have a graph with 6 nodes. Now we have to determine whether this graph contains an Euler path. Solution: The above graph will contain the Euler path if each edge of this graph must be visited exactly once, and the vertex of this can be repeated. Pick up a starting Vertex. Condition 1: If all Nodes have even degree, there should be a euler Circuit/Cycle. We can pick up any vertex as starting vertex. Condition 2: If exactly 2 nodes have odd degree, there should be euler path. We need to pick up any one of this two as starting vertex. Condition 3: If more than 2 nodes or exactly one node ...Euler Circuit. a path that starts and stops at the same vertex, but touches each edge only once. valence. the number of edges that meet at a vertex. Euler's Theorem. a graph has an Euler Circuit if: 1) the graph is connected AND. 2) all vertices have a valence number that is even. Eulerizing.

We review the meaning of Euler Circuit and Bridge (or cut-edge) and discuss how to find an Euler Circuit in a graph in which all vertices have even degree us...Figure 6.5.3. 1: Euler Path Example. One Euler path for the above graph is F, A, B, C, F, E, C, D, E as shown below. Figure 6.5.3. 2: Euler Path. This Euler path travels every edge once and only once and starts and ends at different vertices. This graph cannot have an Euler circuit since no Euler path can start and end at the same vertex ...Then considering the CT Fourier Series expansion of the periodic signal x (t) wrt its fundamental frequency f0 f 0 given as ∑∞−∞akejk2πf0t ∑ − ∞ ∞ a k e j k 2 π f 0 t you can therefore find the coefficients corresponding to 2 cos(3πt) 2 cos ( 3 π t) and sin(100πt + π/3) sin ( 100 π t + π / 3) with k=3 and k=100 respectively.C Program to Check Whether an Undirected Graph Contains a Eulerian Path - The Euler path is a path; by which we can visit every node exactly once. We can use the same edges for multiple times. The Euler Circuit is a special type of Euler path. When the starting vertex of the Euler path is also connected with the ending vertex of that path.To detect the Euler Path, we haveHOW TO FIND AN EULER CIRCUIT. TERRY A. LORING The book gives a proof that if a graph is connected, and if every vertex has even degree, then there is an Euler circuit in the graph. Buried in that proof is a description of an algorithm for nding such a circuit. First, pick a vertex to the the \start vertex."In a given graph check there is a Euler circuit or not. Euler Circuit:-start from any vertices and visit every edge once and finally reach to starting vertices. Note:- Single vertex is also Euler Circuit . Ex:- Above both …1 Answer. If a graph has 1 vertex with degree 2, the vertex has a self-loop edge back to itself. So the graph is a cycle graph. Assume any connected graph with k k vertices, each vertex having degree 2, is a cycle graph, for some k ≥ 1 k ≥ 1. Consider connected graph G G with k + 1 k + 1 vertices, each vertex having degree 2.19 มี.ค. 2565 ... An Euler circuit is a circuit that uses every edge of a graph exactly once. ▷ An Euler path starts and ends at different vertices. ▷ An Euler ...We review the meaning of Euler Circuit and Bridge (or cut-edge) and discuss how to find an Euler Circuit in a graph in which all vertices have even degree us...Using the graph shown above in Figure 6.4. 4, find the shortest route if the weights on the graph represent distance in miles. Recall the way to find out how many Hamilton circuits this complete graph has. The complete graph above has four vertices, so the number of Hamilton circuits is: (N – 1)! = (4 – 1)! = 3! = 3*2*1 = 6 Hamilton circuits. Explore Geek Week 2023. Eulerian Path is a path in graph that visits every edge exactly once. Eulerian Circuit is an Eulerian Path which starts and ends on the same vertex. The task is to find that there exists the Euler Path or circuit or none in given undirected graph with V vertices and adjacency list adj. Input: Output: 2 Explanation: The ...Use Fleury’s algorithm to find an Euler circuit. Add edges to a graph to create an Euler circuit if one doesn’t exist. Identify whether a graph has a Hamiltonian circuit or path. Find the optimal Hamiltonian circuit for a graph using the brute force algorithm, the nearest neighbor algorithm, and the sorted edges algorithm.

Basically, I made some changes in PrintEulerUtil method (below), but that brings me some problems in the algorithm, and I can't find a solution that works. Here is the code: public void printEulerTourUtil (int vertex, int [] [] adjacencyMatrix, String trail) { // variable that stores (in every recursive call) the values of the adj matrix int ...

Video to accompany the open textbook Math in Society (http://www.opentextbookstore.com/mathinsociety/). Part of the Washington Open Course Library Math&107 c...Nov 29, 2022 · An Euler circuit is a way of traversing a graph so that the starting and ending points are on the same vertex. The most salient difference in distinguishing an Euler path vs. a circuit is that a ... Sep 12, 2013 · This lesson explains Euler paths and Euler circuits. Several examples are provided. Site: http://mathispower4u.com An Euler circuit is a connected graph such that starting at a vertex a a, one can traverse along every edge of the graph once to each of the other vertices and return …HOW TO FIND AN EULER CIRCUIT. TERRY A. LORING The book gives a proof that if a graph is connected, and if every vertex has even degree, then there is an Euler circuit in the graph. Buried in that proof is a description of an algorithm for nding such a circuit. First, pick a vertex to the the \start vertex."An Euler path ( trail) is a path that traverses every edge exactly once (no repeats). This can only be accomplished if and only if exactly two vertices have odd degree, as noted by the University of Nebraska. An Euler circuit ( cycle) traverses every edge exactly once and starts and stops as the same vertex. This can only be done if and only if ...Courses Practice Eulerian Path is a path in a graph that visits every edge exactly once. Eulerian Circuit is an Eulerian Path that starts and ends on the same vertex. How to find whether a given graph is Eulerian or not? The problem is same as following question.Section 4.6 Euler Path Problems ¶ In this section we will see procedures for solving problems related to Euler paths in a graph. A step-by-step procedure for solving a problem is called an Algorithm. We begin with an algorithm to find an Euler circuit or path, then discuss how to change a graph to make sure it has an Euler path or circuit.

Braiding sweetgrass lesson plans.

Kansas relays results.

1 Consider the following graph G: (a) Give a decomposition of G into cycles. (b) Find an Eulerian circuit in G. This is a very complicated graph and each time I am …0. Each of the following describes a graph. In each case answer yes, no , or not necessary to this question. Does the graph have an Euler's circuit? Justify your answer. a) G is a connected graph with 5 vertices of degrees 2,2,3,3 and 4. b) G is a connected graph with 5 vertices of degrees 2,2,4,4 and 6. c) G is a graph with 5 vertices of ...Learning Outcomes. Add edges to a graph to create an Euler circuit if one doesn’t exist. Find the optimal Hamiltonian circuit for a graph using the brute force algorithm, the nearest neighbor algorithm, and the sorted edges algorithm. Use Kruskal’s algorithm to form a spanning tree, and a minimum cost spanning tree.Hamiltonian Path - An Hamiltonian path is path in which each vertex is traversed exactly once. If you have ever confusion remember E - Euler E - Edge. Euler path is a graph using every edge (NOTE) of …An Eulerian path on a graph is a traversal of the graph that passes through each edge exactly once. It is an Eulerian circuit if it starts and ends at the same vertex. _\square . The informal proof in the previous section, translated into the language of graph theory, shows immediately that: If a graph admits an Eulerian path, then there are ...Nov 22, 2013 · I have implemented an algorithm to find an Euler cycle for a given starting vertex in an undirected graph (using DFS and removing visited edges), but it always returns only one path. How do I modify the algorithm to search for all possible Euler cycles for a vertex? Here is relevant code: Euler's cycle or circuit theorem shows that a connected graph will have an Euler cycle or circuit if it has zero odd vertices. Euler's sum of degrees theorem shows that however many edges a ...In the end, you will be able to link all the circuits together into one large Euler circuit. Let’s find an Euler circuit in the map of the Camp Woebegone canoe race. In Figure 12.119, we have labeled the edges of the multigraph so that the circuits can be named. In a multigraph it is necessary to name circuits using edges and vertices because ...Impedance vs frequency. ELI the ICE man. Impedance of simple networks. KVL in the frequency domain. Circuit analysis is the process of finding all the currents and voltages in a network of connected components. We look at the basic elements used to build circuits, and find out what happens when elements are connected together into a circuit.Eulerian Circuit is an Eulerian Path which starts and ends on the same vertex. A graph is said to be eulerian if it has a eulerian cycle. We have discussed eulerian circuit for an undirected graph. In this …Step 3. Try to find Euler cycle in this modified graph using Hierholzer's algorithm (time complexity O(V + E) O ( V + E) ). Choose any vertex v v and push it onto a stack. Initially all edges are unmarked. While the stack is nonempty, look at the top vertex, u u, on the stack. If u u has an unmarked incident edge, say, to a vertex w w, then ...Background & Context. FindEulerianCycle attempts to find one or more distinct Eulerian cycles, also called Eulerian circuits, Eulerian tours, or Euler tours in ... ….

Hint: From the adjacency matrix, you can see that the graph is 3 3 -regular. In particular, there are at least 3 3 vertices of odd degree. In order for a graph to contain an Eulerian path or circuit there must be zero or two nodes of odd valence. This graphs has more than two, therefore it cannot contain any Eulerian paths or circuits.Jun 17, 2018 · To check if your undirected graph has a Eulerian circuit with an adjacency list representation of the graph, count the number of vertices with odd degree. This is where you can utilize your adjacency list. If the odd count is 0, then check if all the non-zero vertices are connected. You can do this by using DFS traversals. 2. If a graph has no odd vertices (all even vertices), it has at least one Euler circuit (which, by definition, is also an Euler path). An Euler circuit can start and end at any vertex. 3. If a graph has more than two odd vertices, then it has no Euler paths and no Euler circuits. EXAMPLE 1 Using Euler's Theorem a.An euler path exists if a graph has exactly two vertices with odd degree.These are in fact the end points of the euler path. So you can find a vertex with odd degree and start traversing the graph with DFS:As you move along have an visited array for edges.Don't traverse an edge twice.Find shortest path. Create graph and find the shortest path. On the Help page you will find tutorial video. Select and move objects by mouse or move workspace. Use Ctrl to select several objects. Use context menu for additional actions. Our project is now open source. Finding Euler Circuits Given a connected, undirected graph G = (V,E), find an Euler circuit in G. even. Using a similar algorithm, you can find a path Euler Circuit Existence Algorithm: Check to see that all vertices have even degree Running time = Euler Circuit Algorithm: 1. Do an edge walk from a start vertex until youEuler Circuit. a path that starts and stops at the same vertex, but touches each edge only once. valence. the number of edges that meet at a vertex. Euler's Theorem. a graph has an Euler Circuit if: 1) the graph is connected AND. 2) all vertices have a valence number that is even. Eulerizing.Step 3. Try to find Euler cycle in this modified graph using Hierholzer’s algorithm (time complexity O(V + E) O ( V + E) ). Choose any vertex v v and push it onto a stack. Initially all edges are unmarked. While the stack is nonempty, look at the top vertex, u u, on the stack. If u u has an unmarked incident edge, say, to a vertex w w, then ... How to find a euler circuit, In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven ... , Section 4.6 Euler Path Problems ¶ In this section we will see procedures for solving problems related to Euler paths in a graph. A step-by-step procedure for solving a problem is called an Algorithm. We begin with an algorithm to find an Euler circuit or path, then discuss how to change a graph to make sure it has an Euler path or circuit. , A Eulerian circuit is a Eulerian path in the graph that starts and ends at the same vertex. The circuit starts from a vertex/node and goes through all the edges and reaches the same node at the end. There is also a mathematical proof that is used to find whether a Eulerian Circuit is possible in the graph or not by just knowing the degree of ... , Dec 14, 2016 · This gives 2 ⋅24 2 ⋅ 2 4 Euler circuits, but we have overcounted by a factor of 2 2, because the circuit passes through the starting vertex twice. So this case yields 16 16 distinct circuits. 2) At least one change in direction: Suppose the path changes direction at vertex v v. It is easy to see that it must then go all the way around the ... , An Euler path, in a graph or multigraph, is a walk through the graph which uses every edge exactly once. An Euler circuit is an Euler path which starts and stops at the same vertex. Our goal is to find a quick way to check whether a graph (or multigraph) has an Euler path or circuit., Online courses with practice exercises, text lectures, solutions, and exam practice: http://TrevTutor.comWe talk about euler circuits, euler trails, and do a..., Hint: From the adjacency matrix, you can see that the graph is 3 3 -regular. In particular, there are at least 3 3 vertices of odd degree. In order for a graph to contain an Eulerian path or circuit there must be zero or two nodes of odd valence. This graphs has more than two, therefore it cannot contain any Eulerian paths or circuits. , Euler’s Circuit Theorem. (a) If a graph has any vertices of odd degree, then it cannot have an Euler circuit. (b) If a graph is connected and every vertex has even degree, then it has at least one Euler circuit. The Euler circuits can start at any vertex. Euler’s Path Theorem. (a) If a graph has other than two vertices of odd degree, then , After such analysis of euler path, we shall move to construction of euler trails and circuits. Construction of euler circuits Fleury’s Algorithm (for undirected graphs specificaly) This algorithm is used to find the euler circuit/path in a graph. check that the graph has either 0 or 2 odd degree vertices. If there are 0 odd vertices, start ..., Transcribed Image Text: For parts (a) and (b) below, find an Euler circuit in the graph or explain why the graph does not have an Euler circuit. d a (a) Figure 9: An undirected graph has 6 vertices, a through f. 5 vertices are in the form of a regular pentagon, rotated 90 degrees clockwise. Hence, the top vertez becomes the rightmost vertez., An Euler path, in a graph or multigraph, is a walk through the graph which uses every edge exactly once. An Euler circuit is an Euler path which starts and stops at the same vertex. Our goal is to find a quick way to check whether a graph (or multigraph) has an Euler path or circuit., A Eulerian cycle is a Eulerian path that is a cycle. The problem is to find the Eulerian path in an undirected multigraph with loops. Algorithm¶ First we can check if there is an Eulerian path. We can use the following theorem. An Eulerian cycle exists if and only if the degrees of all vertices are even., Steps to Find an Euler Circuit in an Eulerian Graph Step 1 - Find a circuit beginning and ending at any point on the graph. If the circuit crosses every edges of the graph, the circuit you found is an Euler circuit. , Euler’s Circuit Theorem. (a) If a graph has any vertices of odd degree, then it cannot have an Euler circuit. (b) If a graph is connected and every vertex has even degree, then it has at least one Euler circuit. The Euler circuits can start at any vertex. Euler’s Path Theorem. (a) If a graph has other than two vertices of odd degree, then , We all overthink things sometimes. The problem comes when chronic overthinking starts getting in the way of making good decisions or starts causing undue worry. But there are ways you can help short circuit the process. We all overthink thi..., What are Eulerian circuits and trails? This video explains the definitions of eulerian circuits and trails, and provides examples of both and their interesti..., An Euler path can have any starting point with a different end point. A graph with an Euler path can have either zero or two vertices that are odd. The rest must be even. An Euler circuit is a ..., Two common types of circuits are series and parallel. An electric circuit consists of a collection of wires connected with electric components in such an arrangement that allows the flow of current within them., An Euler path ( trail) is a path that traverses every edge exactly once (no repeats). This can only be accomplished if and only if exactly two vertices have odd degree, as noted by the University of Nebraska. An Euler circuit ( cycle) traverses every edge exactly once and starts and stops as the same vertex. This can only be done if and only if ..., Eulerization. Eulerization is the process of adding edges to a graph to create an Euler circuit on a graph. To eulerize a graph, edges are duplicated to connect pairs of vertices with odd degree. Connecting two odd degree vertices increases the degree of each, giving them both even degree., Eulerization. Eulerization is the process of adding edges to a graph to create an Euler circuit on a graph. To eulerize a graph, edges are duplicated to connect pairs of vertices with odd degree. Connecting two odd degree vertices increases the degree of each, giving them both even degree., Graph (a) has an Euler circuit, graph (b) has an Euler path but not an Euler circuit and graph (c) has neither a circuit nor a path. (a) (b) (c) Figure 2: A graph containing an Euler circuit (a), one containing an Euler path (b) and a non-Eulerian graph (c) 1.4. Finding an Euler path There are several ways to find an Euler path in a given graph., An Euler path can have any starting point with a different end point. A graph with an Euler path can have either zero or two vertices that are odd. The rest must be even. An Euler circuit is a ..., Section 4.6 Euler Path Problems ¶ In this section we will see procedures for solving problems related to Euler paths in a graph. A step-by-step procedure for solving a problem is called an Algorithm. We begin with an algorithm to find an Euler circuit or path, then discuss how to change a graph to make sure it has an Euler path or circuit. , Nov 1, 2021 · A Complete Graph. Let's switch gears for just a moment and talk briefly about another type of graph that has a relation to the number of Hamilton circuits. This type of graph is called a complete ... , 2. In 1 parts b, c, and e, find an Euler circuit on the modified graph you created. 3. Find a graph that would be useful for creating an efficient path that starts at vertex A and ends at vertex B for each of the following graphs. Then find an Euler path starting at A on the modified graph. A B (a) A B (b) 4. Using the eulerized graphs:, Fleury’s algorithm, named after Paul-Victor Fleury, a French engineer and mathematician, is a powerful tool for identifying Eulerian circuits and paths within graphs. Fleury’s algorithm is a precise and reliable method for determining whether a given graph contains Eulerian paths, circuits, or none at all. By following a series of steps ..., Euler's Path Theorem. This next theorem is very similar. Euler's path theorem states the following: 'If a graph has exactly two vertices of odd degree, then it has an Euler path that starts and ..., In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven ... , All the planar representations of a graph split the plane in the same number of regions. Euler found out the number of regions in a planar graph as a function of the number of vertices and number of edges in the graph. Theorem – “Let be a connected simple planar graph with edges and vertices. Then the number of regions in the graph is …, Construct the graph of a given street network. Determine by observation the valence of each vertex of a graph. Define an Euler circuit. List the two conditions ..., Euler's formula Google Classroom About Transcript Euler's formula relates the complex exponential to the cosine and sine functions. This formula is the most important tool in AC analysis. It is why electrical engineers need to understand complex numbers. Created by Willy McAllister. Questions Tips & Thanks Want to join the conversation? Sort by:, Courses Practice Eulerian Path is a path in a graph that visits every edge exactly once. Eulerian Circuit is an Eulerian Path that starts and ends on the same vertex. How to find whether a given graph is Eulerian or not? The problem is same as following question.